

The new German Space Strategy makes the space sector fit for the future

Dr. Juergen Drescher DLR Washington Office

6th Eilene M. Galloway Symposium Washington D.C., December 1st, 2011

Space Policy of the Federal Government: BMWI - Means and Instruments

means / instruments

- participation in ESA programmes, bi- and multi-lateral cooperation
- national R&D space programs
- institutional support to DLR and academia
- → PPP, legislation, etc.

strong focus on European cooperation

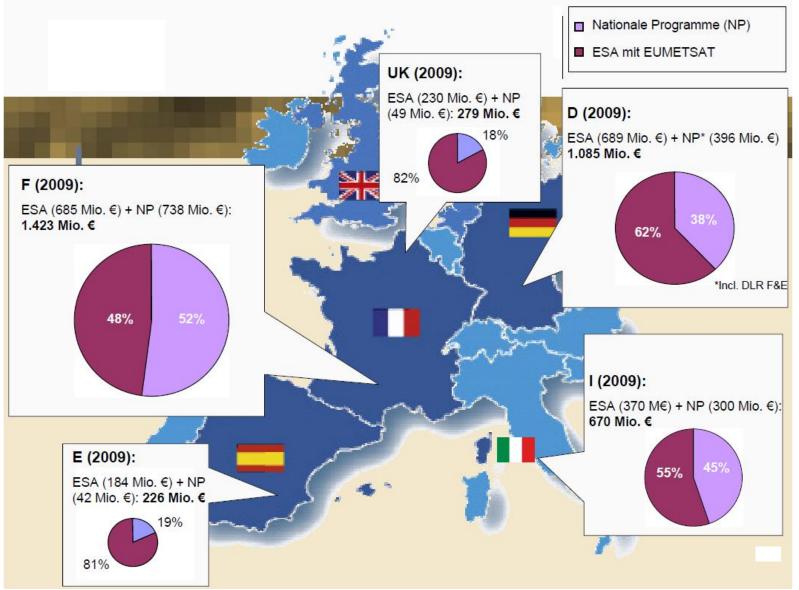
- Germany is second largest contributor to ESA (after France)
- → e.g. BMWI budget (2011)

- contribution to ESA programs

611 MEuro

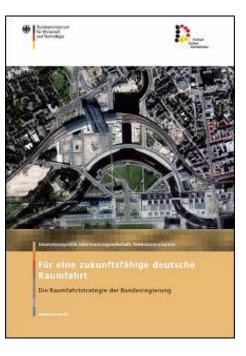
- national R&D space program

242 MEuro


- DLR (German Aerospace Center)

158 MEuro

Space strategyof the Federal Government


- approved by the Federal Government (Council of Ministers) on Nov. 30 and communicated to the public on 12/01/2010 by Minister Brüderle;
- first comprehensive description of political objectives and guidelines since 2001;
- stresses the strategic dimension of space for the future development of Germany

Space strategy of the Federal Government

- → draft prepared under lead of BMWi, contributions by MoD, Foreign Affairs, Transport
- consensus of all concerned ministries (Transport, Defense, Foreign Affairs, Interior, Environment, Agriculture, Development ...) and Chancellery
- consultation of Industry and Academia on the draft in September 2010
- overall positive reactions by parliament, industry, European partners
- → some criticism by parts of academia: e.g.not ambitious enough, more manned spaceflight

Point of Departure: Setting the Stage

→ space has changed

from a **political situation of the Cold War -** "Space Race" to an **essential tool** for politics, economy, society, science, safety & security

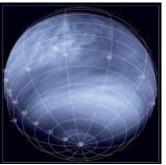
- Germany has developed a competitive space sector which has achieved a number of significant successes (e.g.EO, opticalSatCom, robotics, HSF...)
- a fundamentally changed environment
 - increasing international competition
 - changed legal environment at the European level
 - new US space policy
 - growing importance of private enterprise business models
 - increasing risks (and threats) to space assets

Space – a key solution to meet Global Challenges

▽ globalisation

- flows of data, transportation and goods exchange are set to further expand
- security & safety of the world wide traffic is essential in a distributed global economy
- dependable access to satellite-based services

→ knowledge society


- knowledge is a strategic resource (Germany is short of raw materials)
- science and research are the basis for technical innovation
- technology on the very edge of what is feasible
- access information at any time from anywhere

climate change, preserving essential natural resources and global change

- essential to the existence mankind
- analysis and action to deal with changes is required

→ whole-of-government security preparedness

- political environment has undergone substantial changes

General Guidelines

▽ orientation towards benefits for the society and needs

- state-funded space activities: "space for the benefit of the Earth"
- contribution to the challenges facing the global society
- high levels of funding must result in adequate benefits (innovation / utilization)
- broader involvement and responsibility of users (public and private)

orientation towards the principle of sustainability

- industrial nations depend on space infrastructures which are vulnerable
- conduct space activities in a such manner that also allow that future generations can take full advantage of space

→ intensifying international cooperation

- because of technical complexity and high cost
- correct balance between cooperation and competition
- European cooperation on large infrastructures (ESA, EUMETSAT, EU), bi- and multilateral cooperation

Fields of Action – making Germany's space sector fit for the future

a) expanding strategic space expertise

- strengthen scientific, technical and industrial base within Germany (via National Programme and involvement in ESA programmes)
- system capability and leading capabilities in selected key technologies
- e.g. earth observation, SatCom, space robotics, SatNav
- downstream markets

b) establishing a unified legal framework

- nationally: create a reliable legal framework for nongovernmental (commercial) activities, complementing the existing act on satellite data security
- international cooperation on SSA (space debris, collision avoidance, space weather, NEO)
- PAROS; pragmatic step: Code of Conduct

Fields of action (cont.)

c) sustainabl reinforcement of Germanies strong position in space research

- ESA science program and national (bi- and multilateral) activities
- → transfer of results to terrestrial applications

d) tapping new markets

- develop competences that give rise to business models (e.g. applied remote sensing and GIS, SatCom, SatNav, Space robotics, comm. SF)
- emerging (public) markets for space technology and services – Space tourism
- → ST: launch cost reduction as key to further growth

Fields of action (cont.)

e) exploiting space for security & safety applications

- make use of synergies between civil and military developments
- → closer coordination among government departments
- building up a national competence for space situational awareness in civil-military cooperation
- f) shaping the distribution of roles in the European space sector (ESA/EU)
 - → top EU priorities: Galileo and GMES
 - avoid double structures; "no need to reinvent the wheel"
 - → strengthen ESA with its proven mechanisms
 - third pillar: national programmes incl. bi- and multilateral cooperation

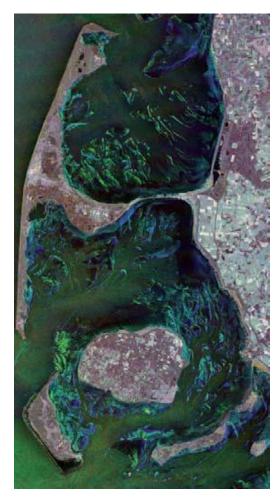
Fields of action (cont.)

g) defining the roles of Germany and Europe in space exploration

- human spaceflight activities focus on ISS utilization (international cooperation)
- > exploration to be driven by clear scientific objectives

h) securing technological independence and guaranted access to space

- ensure access to technologies and to space for the lowest possible cost
- Ariane 5 must remain competitive on the commercial market
- consider possibilities for international cooperation


Earth Observation (1)

essential contributions to

- environmental policy,
 monitoring of environmental treaties
- weather forecasting, climate change monitoring and applied research
- sustainable management of natural resources
- disaster management, early warning, security

commercial earth observation is at the edge of reaching self sustainability

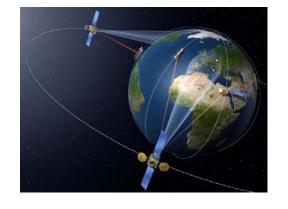
- new models for financing earth observation systems (public-private-partnerships)
- new markets and private business models for data and services
- mixture of state-owned and commercial systems can provide higher flexibility, independence and availability

Earth Observation (2)

- → strong German focus on Earth observation
 - complete technology chains: space segment, ground segment, GIS applications
- **→** leading German contributions to large European programmes
 - EUMETSAT operational weather satellite programmes
 - ESA scientific earth observation and technology programmes
 - EU/ESA Global Monitoring for Environment and Security GMES
- national priorities
 - SAR and SAR Interferometry (TerraSAR-X, TanDEM X, next generation systems TSX 2)
 - optical (e.g. METimage)
 - hyperspectral (EnMAP)
 - atmospheric sensors (MERLIN, lidar-sensor for atmospheric CH4)
- **→** development of applications, market development
- → defining a political and legal framework

Satellite Communication

space technology with high commercial and strategic relevance


- high commercial potential
- high relevance for down-stream markets
- relevance for government and security-related applications

フ current status

- German companies have a strong position in components and sub-systems
- SatCom is gaining a growing role in the national space programme
- strong position in high bandwidth optical communication payloads (LCT)
- extend system capability for small ComSats (SGEO)

→ challenges

- establish optical communication as the next-generation standard
- national technology mission "Heinrich-Hertz" (2015)
- establish data relay capabilities EDRS

Space Robotics Technology

→ since 2009 space robotics technology is being strengthened as an additional topic in the national space activities

- key technology for long term sustainable use of space
- challenging conditions of space force technological solutions at the leading edge
- high potential for technology transfer "spill-over" into terrestrial application (e.g. deep-sea robotics, automated production, health care, autonomous systems...)

→ develop technologies

- on orbital servicing & maintenance, telepresence, teleoperations
- robotics for space exploration (deep space missions)

→ challenge

- German experimental mission for on orbit servicing robotics (DEOS)

Main messages of the German Space Strategy (1)

- → focus on concrete benefit, driven by user demand
 - applications (governmental or private)
 - research
 - → broader basis of responsibilities (in government and industry)
- → focus on strategic technologies and systems
- continue to use potential for commercialization and new funding models (such as PPP)
- continue to set a clearly defined legal environment
 National Space Law essential for further commercialization
- → use specific challenges in space technologies to induce technology transfer and innovation

Main messages of the German Space Strategy (2)

- continued support to space sciences and research, keep balance between basic and applied research
- make use of synergies between military and civil space; coordination of technology, industrial and security policy
- human space flight focuses on ISS and beyond; decision on possible successor to be based on evaluation of ISS experience
- > secure access to **key technologies and launchers**
- maintain **independence of ESA** as intergovernmental organization
- **EU** to focus on applications in support of its policies (at present: Galileo and GMES) and framework conditions

Conclusion

- Strategy / policy paper, not down to the project level, no budget projections
- provides a yardstick against which to measure future proposals:
 contribution to solutions to meet global challenges
- > space is a tool & environment with infrastructure, not an end in itself
- using space where space technologies provide the best solution: competition with other technologies
- → space policy is benefit-driven, not technology-driven.
- Germany cannot act alone, but must be able to judge, to promote and master key technologies and to secure its space assets.